中国·太阳集团tcy8722(有限公司)官方网站-Weixin百科

太阳集团tcy8722网站

浙大-西湖几何分析讨论班——Quantitative geometric inequalities in $\mathbb R^n$: Power growth other than 2

来源:太阳集团tcy8722网站 发布时间:2024-12-16   10

报告人:张翼(中科院)

 间:20241217日(星期二),下午4:00-5:00

 点:海纳苑2206

 要:In the stability of geometric inequalities, usually one gets a growth with power $2$ as a lower bound for the difference of energy. For example, a remarkable result by Fusco, Maggi, and Pratelli says that, for any set of finite perimeter $E \subset \mathbb{R}^n$ with $|E| = |B|$ and a barycenter at the origin, one has $P(E) - P(B) \ge  c(n)|E\Delta B|^2$. This phenomenon also appears in some other follow-up work. During my talk, I introduce some recent results on the cases where the power is no longer $2$ in Euclidean spaces.

 

联系人:江文帅(wsjiang@zju.edu.cn)


Copyright © 2023 中国·太阳集团tcy8722(有限公司)官方网站-Weixin百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者

Baidu
sogou