Combinatorics of F-polynomials
报告题目:Combinatorics of F-polynomials
报告人:费佳睿 研究员 (上海交通大学)
时间:2019年11月26日星期二上午10:00开始
地点:玉泉校区工商楼200-9
Abstract
We introduce the stabilization functors to study the combinatorial aspect of the F-polynomial of a representation of any finite-dimensional basic algebra.
The F-polynomial of a quiver representation M is the generating series of the topological Euler characteristic of the representation Grassmannian of M:
F_M(y) = /sum_{/gamma} /chi(Gr_/gamma(M))y^/gamma.
We characterize the vertices of their Newton polytopes. We give an explicit formula for the F-polynomial restricting to any face of its Newton polytope.
For acyclic quivers, we give a complete description of all facets of the Newton polytope when the representation is general. We also prove that the support of F-polynomial is saturated for any rigid representation. We provide many examples and counterexamples, and pose several conjectures.
报告人简介:2010获密歇根大学博士学位,师从Harm Derksen。随即在加州大学河滨分校担任访问助理教授4年,期间在MSRI担任研究员数月,之后在台北的理论科学中心担任研究员两年。2017年起在上海交通大学担任特别研究员,获国家高层次人才项目支持。
费佳睿的主要研究领域属于表示理论范畴。具体的研究方向和兴趣包括:丛代数、箭图表示、李理论和不变量理论。
联系人:李方教授(fangli@zju.edu.cn)