Statistics |Robust post inference of high dimensional linear models
题目:Robust post inference of high dimensional linear models
报告人:林媛媛 (香港中文大学)
时间:2019.10.28(周一)上午9:00
摘要:
Robust inference is of key importance to large scale inference. Under the high dimensional linear regression with an intercept term, we propose a robust post-selection inference method based on the Huber loss for the regression parameters, when the error distribution is heavy-tailed and asymmetric that is common in various scientific fields.
The asymptotic properties of the resulting estimator are established under mild conditions. Statistical tests for low-dimensional parameters or individual coefficient in the high dimensional linear model are also studied. Simulation studies demonstrate desirable properties of the proposed method. An application to a genomic dataset about riboflavin production rate is provided.
欢迎广大师生踊跃参加!
联系人:蒋杭进(jianghj@zju.edu.cn)
浙江大学数据科学研究中心
报告人简介:
林媛媛博士毕业于香港科技大学数学系,现为香港中文大学统计系助理教授. 她的主要研究方向为高维数据分析,生存分析等,目前已经在JASA, Biometrika,Statistica Sinica等国际知名期刊上发表论文17篇。