求是数学短期课程(19-20学年秋冬学期)求是数学短期课程Introduction to the Nonlinear Schroedinger Equation
求是数学短期课程(19-20学年秋冬学期)
求是数学短期课程
Introduction to the Nonlinear Schroedinger Equation
主讲人:法国索邦大学(巴黎六大)Thierry Cazenave教授
授课时间和地点:
10月9日周三晚上: 18:00-20:15(3课时),玉泉工商楼105
10月11日周五晚上:18:00-20:15(3课时),玉泉工商楼105
10月12日周六下午: 13:00-15:15(3课时),玉泉外经贸楼113
10月14日周一下午: 13:30-15:45(3课时),玉泉外经贸楼113
10月16日周三晚上: 18:45-20:15(3课时),玉泉工商楼105
本课程15个课时。适合于太阳集团tcy8722网站数学与应用数学专业四年级及部分三年级本科生,以及研究生选修。课程结束后的作业或试卷交助教,报告交杨利平老师,需要学分的同学在四年级第二学期的选课时选择专题讲座(抵8次学术讲座),由教务秘书登记成绩。
课程简介
1 Sobolev spaces on R^N (3 lectures)
a Definitions and basic properties (approximation by smooth functions)
b The Fourier transform and Sobolev / Besov spaces
c The chain rule
d Sobolev and Gagliardo-Nirenberg inequalities
e Compactness properties: local Rellich, and profile decomposition (if we have
time)
f Ground states and best constants in certain Gagliardo-Nirenberg's inequalities
2 The linear Schroedinger equation (2 lectures)
a The fundamental solution and the Schroedinger group
b Dispersive and Strichartz estimates
c The nonhomogeneous equation and Duhamel's formula,
3 Local theory for the nonlinear Schroedinger equation (NLS) (2 lectures)
a Local theory in L^2
b Local theory in H^1
4 NLS in the defocusing case (2 lectures)
a Global existence
b Asymptotic completeness and scattering
5 NLS in the focusing case (3 lectures)
a Low-energy scattering
b The viriel identity and finite-time blowup
c A Schroedinger equation with nonlinear source term: construction of blow-up solutions