中国·太阳集团tcy8722(有限公司)官方网站-Weixin百科

太阳集团tcy8722网站

Dynamical degrees of self-maps on abelian varieties

来源:太阳集团tcy8722网站 发布时间:2019-05-31   607

报告题目: Dynamical degrees of self-maps on abelian varieties

报告人:Fei Hu (英属哥伦比亚大学)

时间:2019年6月3日(周一)下午4:00-5:00 

地点:工商楼200-9

摘要: Let $X$ be a smooth projective variety defined over an algebraically closed field of arbitrary characteristic, and $f/colon X /to X$ a surjective morphism. The $i$-th cohomological dynamical degree $/chi_i(f)$ of $f$ is defined as the spectral radius of the pullback $f^*$ on the /'etale cohomology group $H^i_{et}(X, /bQ_/ell)$ and the $k$-th numerical dynamical degree $/lambda_k(f)$ as the spectral radius of the pullback $f^*$ on the vector space $N^k(X)_/bR$ of real algebraic cycles of codimension $k$ modulo numerical equivalence. Truong conjectured that $/chi_{2k}(f) = /lambda_k(f)$ for any $1 /le k /le /dim X$. When the ground field is the complex number field, the equality follows from the positivity property inside the de Rham cohomology of the ambient complex manifold $X(/bC)$. We prove this conjecture in the case of abelian varieties. The proof relies on a new result on the eigenvalues of self-maps of abelian varieties in prime characteristic, which is of independent interest.

联系人叶和溪老师yehexi@zju.edu.cn) 

Copyright © 2023 中国·太阳集团tcy8722(有限公司)官方网站-Weixin百科    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者

Baidu
sogou